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Abstract— We consider a list decoding algorithm recently
proposed by Pellikaan-Wu [8] for q-ary Reed-Muller codes
RM q(`, m, n) of length n ≤ qm when ` ≤ q. A simple and
easily accessible correctness proof is given which shows that
this algorithm achieves a relative error-correction radius of
τ ≤

(
1−

√
`qm−1/n

)
. This is an improvement over the proof

using one-point Algebraic-Geometric codes given in [8]. The
described algorithm can be adapted to decode Product-Reed-
Solomon codes.

We then propose a new low complexity recursive algebraic
decoding algorithm for Reed-Muller and Product-Reed-Solomon
codes. Our algorithm achieves a relative error correction radius
of τ ≤ ∏

m
i=1

(
1−

√
ki/q

)
. This technique is then proved to

outperform the Pellikaan-Wu method in both complexity and
error correction radius over a wide range of code rates.

I. INTRODUCTION

With the discovery of deterministic list-decoding algo-
rithms for several Algebraic-Geometric codes, most notably
the Guruswami-Sudan [6] algorithm, there has been renewed
interest in algebraic decoding methods for other related q-
ary codes such as the Reed-Muller [7], [8] and Product-Reed-
Solomon [9] codes. However some of the existing correctness
proofs for these algorithms use advanced algebraic geometric
tools. In this paper we first derive a proof for a list decoding
algorithm for a q-ary Reed-Muller code. Our proof is from
first principles and require only the most basic notions from
finite field theory. We then proceed to propose new recursive
list decoding algorithms for Reed-Muller and Product-Reed-
Solomon codes. These algorithms are rigorously shown to
outperform the Pellikaan-Wu method in both complexity as
well as error-correction-radius.

The basic idea of our new proof for the Pellikaan-
Wu algorithm is to “lift” a multivariate polynomial in
Fq[x1, x2, . . . , xm ] to a univariate polynomial in Fqm [X ] using
a deterministic mapping rule. This in turn results in a higher
total degree polynomial. The increase in degree will not be
high enough to render our list decoding strategy for Reed-
Muller codes useless at meaningful rates. A higher degree
for the lifted polynomial means that this Reed-Muller code
list decoding algorithm has a lower relative error-correction
radius (as a function of the rate) than a comparable rate
Reed-Solomon list decoder based on the Guruswami-Sudan
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algorithm. In the following section we describe the mapping
rule and the decoding algorithm in some detail.

In the final section we propose new algorithms for de-
coding Reed-Muller and Product-Reed-Solomon codes. Our
algorithm is more efficient than the Pellikaan-Wu method by
approximately a quadratic factor. Furthermore it outperforms
the Pellikaan-Wu algorithm in error-correction-radius over a
wide range of code rates.

II. CORRECTNESS OF A LIST DECODING ALGORITHM

Let us begin by defining a q-ary Reed-Muller code.

Definition 1 The q-ary Reed-Muller code RM q(`, m, n) of
length n≤ qm is defined as the set of vectors given by:

RM q(`, m, n) def= { [ϕ(ααα1) ϕ(ααα2) · · · ϕ(αααn) ]
| ϕ ∈ Fq[x1, x2, . . . , xm], deg(ϕ)≤ ` } (1)

where {ααα1,ααα2, . . . ,αααn} are any set of n distinct points in Fm
q .

Here by deg(ϕ) we mean the total degree of the multivariate
polynomial ϕ .

The following well known property will be useful:

Proposition 1 Let {a1, a2, . . . , am } be a basis for Fqm over
Fq and let [x1 x2 . . . xm] ∈ Fm

q . Then the map ψ : Fm
q → Fqm

defined as in (2) is an isomorphism.

[x1 x2 . . . xm] 7→ X def=
m

∑
j=1

a jx j (2)

For example one might as usual use a polynomial basis
{1, ξ , ξ 2, . . . , ξ m−1 } where ξ is any primitive element in Fqm

or even a normal basis of the form {ζ , ζ q, ζ q2
, . . . ,ζ qm−1 },

where ζ is a suitable primitive element in Fqm .
Therefore we arrive at this elementary conclusion:

Lemma 1 Let X ∈ Fqm . The reverse isomorphism for (2) is:

X 7→ [x1 x2 . . . xm]T def= AAA−1 · [X Xq Xq2
. . . Xqm−1

]T (3)

where

AAA def=


a1 a2 . . . am
aq

1 aq
2 . . . aq

m
...

...
. . .

...

aqm−1

1 aqm−1

2 . . . aqm−1

m

 (4)



is a non-singular (invertible) square matrix.

Proof: Since X = ∑
m
j=1 a jx j, and x j ∈ Fq, we get Xqi

=

∑
m
j=1 aqi

j x j using Fermat’s little theorem. It only remains to
show that AAA is non-singular. Note that in general AAA is not
a Vandermonde matrix. However by construction, the set
{a1, a2, . . . , am } is a basis for Fqm over Fq. It then follows
from [4, Corollary 2.38, pp. 58] that AAA is non-singular.

It follows from Lemma 1 that there exist polynomials µ j ∈
Fqm [X ] of degree at most qm−1 such that x j = µ j(X),1≤ j≤m.
Substituting for all x j in this manner, we have proved the
following:

Theorem 1 Let n≤ qm. If `≤ q then

RM q(`, m, n)⊆RS qm(n, `qm−1)∩Fn
q (5)

where RS qm(n, `qm−1) is the Reed-Solomon code given by

RS qm(n, `qm−1) def= { [ f (β1) f (β2) . . . f (βn) ]

| f ∈ Fqm [X ], deg( f )≤ `qm−1 } (6)

where βi
def= ∑

m
j=1 a jαi j, and ααα i

def= [αi1 αi2 . . . αim], 1 ≤ i ≤
n are the points of evaluation for the Reed-Muller code.
Moreover if the information polynomial associated with the
Reed-Muller code is given by

ϕ(x1, x2, . . . , xm ) def= ∑
i1,i2,...,im :
∑ j i j≤`

ϕi1,i2,...,im

m

∏
j=1

x
i j
j (7)

then the information polynomial f of degree at most `qm−1

associated with the Reed-Solomon code is:

f (X) = ∑
i1,i2,...,im :
∑ j i j≤`

ϕi1,i2,...,im

m

∏
j=1

(µ j(X))i j (8)

Let dH(xxx, yyy) represent the Hamming distance between the
two vectors. Using Theorem 1 and the Guruswami-Sudan
algorithm [6] for list decoding a Reed-Solomon code, we
have proved the correctness of the following deterministic list-
decoding algorithm for Reed-Muller codes:

Algorithm 1 (RM-List-1)
INPUT: q, `≤ q,m,n≤ qm; rrr = [r1 r2 . . . rn ] ∈ Fn

q.
STEPS:

1. Compute the parameter t =
⌈

n
(

1−
√

`qm−1/n
)⌉

.
2. Using Guruswami-Sudan algorithm find a list L of code-

words ccc ∈RS qm(n, `qm−1) such that dH(ccc, rrr) < t.
3. For every ccc ∈L check if ccc ∈ Fn

q :
i. If NO then discard ccc from L .

ii. If YES then check if ccc ∈RM q(`, m, n) :
a. If NO then discard ccc from L .
b. If YES then keep ccc in the list L .

4. return

OUTPUT: L

This algorithm was originally proposed by Pellikaan-Wu in
[8], though their proofs were different.

A. Complexity of Algorithm 1

The complexity of our proposed algorithm is of the same
order as the complexity of Guruswami-Sudan algorithm for
decoding Reed-Solomon codes over the extension field Fqm .
This is O(n3) field operations in Fqm .

B. Comparison to previous results

The Pellikaan-Wu algorithm for decoding Reed-Muller
codes by means of embedding into one-point Algebraic-
Geometric codes was shown [8] to achieve an error correction
radius of

⌈
n
(

1−
√

`(q+1)m−1/n
)⌉

. It is interesting to note
that the error-correction radius demonstrated herein is always
larger than that suggested by the Pellikaan-Wu formalism
employing Algebraic-Geometric codes. However we believe
that the more important contribution of this paper is the readily
accessible correctness proof which relies on just a few basic
notions from Galois theory.

C. Product Reed-Solomon codes

Product Reed-Solomon codes PRS q,m(qm, k1, . . . , km) def=
⊗m

i=1RS q(q, ki) over Fm
q can be thought of as the set of

vectors whose qm coordinates consist of the qm evaluations
of m-variate information polynomials with coefficients in
Fq and degree in the ith-variable xi at most (ki − 1). m
is usually called the dimension of the product code. Thus
PRS q,m(qm, k1, . . . , km) is contained in RM q(∑m

i=1(ki −
1), m, qm). When ∑

m
i=1(ki−1)≤ q the list decoding algorithm

given in Algorithm 1 may be used essentially without any
modifications. Several Product-Reed-Solomon algebraic list
decoders, including a similar method as sketched above are
described in [9]. Using Algorithm 1 it is possible to achieve
a relative error correction radius of (1−

√
∑

m
i=1 ρi), where

ρi
def= ki/q.

D. Zeros of Multivariate Polynomials

From Theorem 1, it is clear that f (X) being of degree
at most `qm−1, has at most `qm−1 zeros in Fqm , including
multiplicities. Therefore a non-zero multivariate polynomial
ϕ(x1, x2, . . . , xm ) of total degree ` has at most `qm−1 zeros in
Fm

q . This gives the famous DeMillo-Lipton-Schwartz-Zippel[2]
lemma for polynomials over finite fields. Note that the state-
ment above appears to be stronger than the classical lemma
in that this counts multiplicities too. Moreover the proof also
appears to differ from the traditional expositions which use
probabilistic arguments.

Next we propose a lower complexity recursive algebraic de-
coder which outperforms the Reed-Muller decoder considered
in this section.
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Fig. 1: 2D PRS code described on a rectangular array.

III. A RECURSIVE DECODING ALGORITHM FOR
REED-MULLER AND PRODUCT REED-SOLOMON CODES

For simplicity, let n def= qm. A codeword in the code
PRS q,m(qm, k1, . . . , km) can be described within an m-
dimensional cube of side length q. See Figure 1. Let a
codeword ccc (correspondingly a received word, rrr) be so de-
scribed. We will find it convenient to write this vector as
〈[ccci1,i2,...,im ]〉, where each of the indices i j take values in the
range {1, . . . ,q}. We further use the notation 〈[ccca j ,a j+1,...,am

i1,i2,...,i j−1
]〉

to denote the ( j − 1)-dimensional vector formed out of
〈[ccci1,i2,...,im ]〉 when the coordinates indexed by (i j, i j+1, . . . , im)
are fixed at (a j,a j+1, . . . ,am) and the rest of the indices are
free. By the nature of the product code, 〈[ccca j ,a j+1,...,am

i1,i2,...,i j−1
]〉 belongs

to PRS q, j−1(q j−1, k1, . . . , k j−1).
Now consider the following decoding algorithm for the code

PRS q,m(qm, k1, . . . , km):

Algorithm 2 (PRS-Decoder)
INPUT: q,(k1,k2, . . . ,km) : ki < q,m; rrr ∈ Fn

q, where rrr def=
〈[ri1,i2,...,im ]〉;1≤ i j ≤ q.
STEPS:
1. If m = 1 do:

i. Compute the parameter t1 =
⌈

q
(

1−
√

k1/q
)⌉

.
ii. Using Guruswami-Sudan algorithm find a list L1 of

codewords ccc1 ∈RS q(q, k1) such that dH(ccc1, 〈[rrri1 ]〉) <
t1.

iii. Search L1 for ccc1 such that dH(ccc1, 〈[rrri1 ]〉) is least.
Substitute in-place the positions corresponding to 〈[rrri1 ]〉
in rrr with ccc1 and return.

2. For am = 1,2, . . . ,q do:
i. Set rrr′←〈[rrram

i1,i2,...,im−1
]〉

ii. Set m′← m−1 and n′← qm′

iii. Recursively decode rrr′ using PRS-Decoder with input
parameters q,(k1,k2, . . . ,km′),m′; rrr′ ∈ Fn′

q .

3. Compute the parameter tm =
⌈

q
(

1−
√

km/q
)⌉

.
4. For each m−1 tuple (a1,a2, . . . ,am−1) do:

i. Using Guruswami-Sudan algorithm find a list
Lm of codewords cccm ∈ RS q(q, km) such that
dH(cccm, 〈[rrra1,a2,...,am−1

im ]〉< tm.
ii. Search Lm for cccm such that dH(cccm, 〈[rrra1,a2,...,am−1

im ]〉) is
least. Substitute in-place the positions corresponding
to 〈[rrra1,a2,...,am−1

im ]〉 with cccm.
5. return
OUTPUT: Resulting vector rrr

The following recursive algorithm uses PRS-Decoder to
decode RM q(`, m, n).

Algorithm 3 (RM-List-2)
INPUT: q, `≤ q,m,n≤ qm; rrr = [r1 r2 . . . rn ] ∈ Fn

q.
STEPS:
1. For each possible m-tuple (k1,k2, . . . ,km) : ki < q,∑ j k j ≤ `

do:
i. Using PRS-Decoder with input parameters

q,(k1,k2, . . . ,km),m; rrr ∈ Fn
q, decode rrr as ccc.

ii. Add ccc to a list L of codeword candidates.
2. return
OUTPUT: L

We have the following result concerning the decoding power
of Algorithm 2 and Algorithm 3.

Theorem 2 Algorithm 2 has a relative error correction radius
of τm

def= ∏
m
i=1(1−

√
ρi), where ρi

def= ki/q. Moreover, there exist
error patterns of weight above n∏

m
i=1(1−

√
ρi) which cannot

be guaranteed to be efficiently decoded by Algorithm 2.

Proof:
Our proof is by induction. When m = 1, the claim is trivially

true. Let us assume the claim to be true for some m = M. We
will now show it to be true for the case m = M+1. Let there be
a maximum of tM+1 = qM+1

∏
M+1
i=1 (1−√ρi) errors. In Step 2

of Algorithm 2, let there be a maximum of x recursions which
fail to decode correctly. Since by the induction hypothesis, this
would mean that there are more than tM errors in these x sub-
recursions, we have that xtM ≤ tM+1. Substituting for tM+1 and
tM gives, x≤ q(1−√ρM+1). These errors will get corrected in
Step 4 of the algorithm. This proves the first part of the claim.
For the 2D case, the proof is concisely depicted in Figure 2.

To see the second part of the claim, we observe that
an error pattern which is contiguously spread over an m
dimensional sub-cube of volume more than n∏

m
i=1(1−

√
ρi)

cannot be guaranteed to be efficiently decoded by the proposed
algorithm. This shows that the error correction radius predicted
in the first part of Theorem 2 is rather tight.
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Fig. 2: The proof of Theorem 2 for a 2D PRS code.

A. Complexity of Algorithm 2 and Algorithm 3

Let ϑm be the complexity of decoding an m-dimensional
Product-Reed-Solomon code using Algorithm 2. Then the
complexity of decoding an m+1 dimensional code is ϑm+1 =
O(qϑm + qm ϑ1). But ϑ1 = O(q3) field operations in Fq.
This gives, ϑm = O(qm+2) which is ≈ O(n) for large m. The
complexity of Algorithm 3 is ≈O(n2) field operations in Fq.
This is substantially better than the Pellikaan-Wu method in
Algorithm 1.

B. Comparison of Algorithm 1 and Algorithm 3

Algorithm 3 not only has a lower complexity, but also
performs better over a wide range of rates. For example when
∑i ρi > 1, the Pellikaan-Wu algorithm is not effective, whereas
the new algorithm is still useful. Furthermore ∏

m
i=1(1−

√
ρi)

is larger than (1−
√

∑
m
i=1 ρi) for most code rates and the

advantage is more pronounced at higher code rates. Figure
3 shows the decoding power of Algorithm 2.

C. Other Related Product Code Decoders

Several iterative hard decision decoders for Product-Reed-
Solomon codes available in literature use some form of
Algorithm 2. Usually such algorithms are described with
no theoretical bounds on their error correction radii. These
product code decoders find use in optical communication
systems and LAN/WAN standards[10], [11]. Several hard-
ware implementations of such decoders are commercially
available[12], [13], [14]. Soft decision iterative decoders for
product codes utilizing the ”turbo-principle” have also been
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recursive RM/PRS decoder.



discussed in literature[5]. The performance of most of these
hard decision iterative decoders can be very well characterized
using Theorem 2. Similar conclusions are obvious for the case
of other product codes which have algebraic bounded distance
decoders available for their component codes. Theorem 2
implies the following for a general product code:

Corollary 1 If for an m-dimensional product code P, there
exists bounded distance decoders for each of its component
codes such that the ith component code’s decoder achieves a
error correction radius of ti errors, then there exists a decoding
algorithm for the entire product code P which can correct all
errors up to a weight of t = ∏

m
i=1 ti.

The decoding algorithm for the code P mentioned in Corollary
1 can be obtained from Algorithm 2 with some obvious and
minor changes and as such is not repeated here. This result is,
to the best of the author’s knowledge, the only such theoretical
guarantee on the error correction radius of a general algebraic
product code decoder. However for specific cases there are
some stronger results available, for instance see the result of
Lin-Weldon[1] for cyclic product codes. In another related
example, Tanner[3] discusses bounds on a specific type of
hard-decision decoder for product codes on graphs. In many
cases of practical interest such bounds are difficult to apply
because of their dependence on the knowledge of the girth of
the underlying code graph.

IV. CONCLUSIONS

In this paper, we presented a simple and easily accessible
proof for the Pellikaan-Wu algebraic list decoding algorithm
for Reed-Muller codes. Our proof uses only the most funda-
mental properties of finite field arithmetic.

We also proposed a low complexity recursive algorithm
for Reed-Muller and Product-Reed-Solomon codes. This new
recursive algebraic decoding algorithm is then shown to have
a significantly better error correction radius than the Pellikaan-
Wu algorithm over a wide range of code rates.
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